Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Horm Res Paediatr ; 97(2): 203-210, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37611564

RESUMEN

INTRODUCTION: The SALL4 gene encodes a transcription factor that is essential for early embryonic cellular differentiation of the epiblast and primitive endoderm. It is required for the development of neural tissue, kidney, heart, and limbs. Pathogenic SALL4 variants cause Duane-radial ray syndrome (Okihiro syndrome), acro-renal-ocular syndrome, and Holt-Oram syndrome. We report a family with vertical transmission of a SALL4 pathogenic variant leading to radial hypoplasia and kidney dystopia in several generations with additional growth hormone deficiency (GHD) in the proband. CASE PRESENTATION: Our male proband was born at the 39th week of gestation. He was born small for gestational age (SGA; birth weight 2,550 g, -2.2 SDS; length 47 cm, -2.0 SDS). He had bilateral asymmetrical radial ray malformation (consisting of radial hypoplasia, ulnar flexure, and bilateral aplasia of the thumb) and pelvic kidney dystopia, but no cardiac malformations, clubfoot, ocular coloboma, or Duane anomaly. He was examined for progressive short stature at the age of 3.9 years, where his IGF-1 was 68 µg/L (-1.0 SD), and growth hormone (GH) after stimulation 6.2 µg/L. Other pituitary hormones were normal. A brain CT revealed normal morphology of the cerebral midline and the pituitary. He had a dental anomaly - a central mandibular ectopic canine. MRI could not be done due to the presence of metal after multiple corrective plastic surgeries of his hands. His mother's and father's heights are 152.3 cm (-2.4 SD) and 177.8 cm (-0.4 SD), respectively. His father has a milder malformation of the forearm. The affected paternal grandfather (height 164 cm; -2.3 SD) has a radial ray defect with missing opposition of the thumb. The family reports a similar phenotype of radial dysplasia in the paternal grandfather's mother. The proband started GH therapy at age 6.5 years when his height was 109 cm (-2.8 SDS) and he experienced catch-up growth as expected in GHD. Puberty started spontaneously at the age of 12.5 years. At age 13, his height was 158.7 cm (-0.2 SDS). Whole-exome sequencing revealed a nonsense variant in the SALL4 gene c.1717C>T (p.Arg573Ter) in the proband, his father, and paternal grandfather. CONCLUSION: This is the first observation of a patient with a congenital upper limb defect due to a pathogenic SALL4 variant who has isolated GHD with no apparent cerebral or facial midline anomaly and has been successfully treated with growth hormone.


Asunto(s)
Síndrome de Retracción de Duane , Hormona de Crecimiento Humana , Hipopituitarismo , Preescolar , Humanos , Masculino , Síndrome de Retracción de Duane/genética , Síndrome de Retracción de Duane/patología , Hipopituitarismo/genética , Riñón/patología , Fenotipo , Factores de Transcripción/genética , Extremidad Superior/patología , Adulto
2.
J Neuroophthalmol ; 44(1): 101-106, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37682628

RESUMEN

BACKGROUND: Duane retraction syndrome (DRS) is known to relate to the absence of the abducens nucleus, with abnormal innervation of the lateral rectus (LR) muscle by branchesof the oculomotor nerve (CN III). The purposes of this study were to investigate the morphological characteristics of the oculomotor nerve (CN III), the abducens nerve (CN VI), and the extraocular muscles in patients with clinically diagnosed Duane retraction syndrome (DRS) using MRI. In addition, we assessed the association between ocular motility, horizontal rectus muscle volumes, and CN III/VI in patients with Duane retraction syndrome (DRS). METHODS: The study comprised 20 orthotropic control subjects (40 eyes) and 42 patients with Duane syndrome (48 eyes), including 20 patients with DRS Type I (24 eyes), 5 patients with DRS Type II (6 eyes), and 17 patients with DRS Type III (18 eyes). Three-dimensional (3D) T1/2 images of the brainstem and orbit were obtained to visualize the cranial nerves, especially the abducens (VI) and oculomotor (III) nerves, as well as extraocular muscles. RESULTS: Based on the clinical classification, among 42 patients, MRI showed that the abducens nerves (CN VI) on the affected side were absent in 24 of 24 eyes (100%; 20 patients) with Type I DRS and in 16 of 18 eyes (88%; 16 patients) with Type III DRS. However, CN VI was observed in 6 of 6 eyes (100%; 5 patients) with Type II DRS and in 2 of 18 eyes (11%) with Type III DRS. CN III was observed in all patients. The oculomotor nerves on the affected side were thicker than those on the nonaffected contralateral side in DRS Type I ( P < 0.05) and Type III ( P < 0.05), but not in DRS Type II. Smaller LR and larger MR volumes were shown in the affected eye than that in the nonaffected eye in DRS Types I and III. Based on the presence or absence of CN VI, there was a tendency for thicker oculomotor nerves in the affected eye than in the nonaffected eye in the absence groups ( P < 0.05). However, no significant difference was found in the present group. In the CN VI absence groups, similar results were found in the affected eyes than in the nonaffected eyes as in DRS Types I and III. In addition, the presence of CN VI was correlated with better abduction ( P = 0.008). The LR and MR volumes have positive correlations with the oculomotor nerve diameter in the affected eye. However, there was no correlation between the range of adduction/abduction and the LR/MR ratio in patients with or without an abducens nerve. CONCLUSIONS: Different types of DRS have different characteristic appearances of CN VI and CN III on MRI. Horizontal rectus muscles have morphological changes to adapt to dysinnervation of CN VI and aberrant innervation of CN III. Thus, these neuroimaging findings may provide a new diagnostic criterion for the classification of DRS, improving the comprehension of the physiopathogenics of this disease.


Asunto(s)
Síndrome de Retracción de Duane , Humanos , Síndrome de Retracción de Duane/diagnóstico , Síndrome de Retracción de Duane/patología , Nervio Abducens/diagnóstico por imagen , Músculos Oculomotores/diagnóstico por imagen , Músculos Oculomotores/inervación , Órbita/patología , Imagen por Resonancia Magnética/métodos
3.
BMC Med Genomics ; 16(1): 33, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829172

RESUMEN

BACKGROUND: SALL4, a member of the SALL genes family, encodes a zinc-finger transcriptional factor that either activates or represses gene transcription depending on cell type during embryonic development. SALL4 mutations cause extremely variable conditions including Duane-radial ray (DRR), Okihiro, Holt-oram, Acro-renal ocular and IVIC syndromes, all with autosomal dominant inheritance pattern. However, all these syndromes with different terminologies are actually the same entity termed SALL4 related disorders. CASE PRESENTATION: Herein, we examine an Iranian patient suspected to DRR syndrome which has not been previously described in the population. Whole-exome sequencing (WES) was performed to examine pathogenic genes in the proband. Subsequently, Sanger sequencing was used to confirm the mutation found. To elucidate the effects of the identified mutation, clinical data of patient was collected. Morever, the possible impact of the mutation found on the corresponding protein was evaluated using bioinformatics tools. WES identifed a novel de novo heterozygous nonsense mutation in exon 2 of SALL4 gene (c.712 C > T:p.Q238X). Subsequently, segregation and phenotype-genotype correlation analysis as well as in-silico approaches confirmed the autosomal dominance inheritance and disease-causing nature of the identified mutation. In addition, studied patient had features not described previously, including kyphoscoliosis, dimple presacral sinus, barrel chest and artric disc (C6-C7). These manifestations could be additional characteristics of the growing phenotypic spectrum of SALL4 related disorders. CONCLUSION: Our findings could extend the pathogenic mutations and phenotypic spectrum of SALL4 related disorders. Such reports can also aid to conduct genetic counseling, prenatal diagnosis and clinical management for individuals at high risk of SALL4 related disorders.


Asunto(s)
Síndrome de Retracción de Duane , Humanos , Síndrome de Retracción de Duane/genética , Síndrome de Retracción de Duane/patología , Codón sin Sentido , Irán , Factores de Transcripción/genética , Mutación , Linaje
4.
Life Sci Alliance ; 6(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36635047

RESUMEN

Spalt-like 4 (SALL4) maintains vertebrate embryonic stem cell identity and is required for the development of multiple organs, including limbs. Mutations in SALL4 are associated with Okihiro syndrome, and SALL4 is also a known target of thalidomide. SALL4 protein has a distinct preference for AT-rich sequences, recognised by a pair of zinc fingers at the C-terminus. However, unlike many characterised zinc finger proteins, SALL4 shows flexible recognition with many different combinations of AT-rich sequences being targeted. SALL4 interacts with the NuRD corepressor complex which potentially mediates repression of AT-rich genes. We present a crystal structure of SALL4 C-terminal zinc fingers with an AT-rich DNA sequence, which shows that SALL4 uses small hydrophobic and polar side chains to provide flexible recognition in the major groove. Missense mutations reported in patients that lie within the C-terminal zinc fingers reduced overall binding to DNA but not the preference for AT-rich sequences. Furthermore, these mutations altered association of SALL4 with AT-rich genomic sites, providing evidence that these mutations are likely pathogenic.


Asunto(s)
Síndrome de Retracción de Duane , Factores de Transcripción , Humanos , Síndrome de Retracción de Duane/genética , Síndrome de Retracción de Duane/metabolismo , Síndrome de Retracción de Duane/patología , Mutación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc
5.
Mol Med Rep ; 25(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35179219

RESUMEN

Okihiro syndrome is an autosomal dominant condition characterized by Duane anomaly and radial ray defects. The present study aimed to analyze the clinical manifestations of a patient with Okihiro syndrome and perform genetic testing on the proband and his family to determine the biological pathogenesis. Clinical data were collected from the proband and his family and genomic DNA was extracted from peripheral blood. Whole exome sequencing was performed by high­throughput sequencing and mutation sites of the proband and his parents were validated by Sanger sequencing. The proband was diagnosed with Okihiro syndrome, which is characterized by bone abnormality in the arms and hands (radial ray malformation, absence of thumbs) and sensorineural hearing loss. A pathogenic heterozygous c.3060delG variant was identified in exon 4 of spalt­like transcription factor 4 (SALL4) gene in the proband. This is a frameshift mutation that changes increases the length of SALL4 protein from 1,053 to 1,076 amino acids. The variant was classed as a de novo mutation because the parents of the proband showed no variation at this site. This variant is not included in the ClinVar database and, to the best of our knowledge, has not previously been reported. The de novo heterozygous c.3060delG variant was the molecular pathological cause of Okihiro syndrome in the present study and expanded the database of known SALL4 variants.


Asunto(s)
Síndrome de Retracción de Duane , China , Síndrome de Retracción de Duane/genética , Síndrome de Retracción de Duane/patología , Heterocigoto , Humanos , Mutación , Linaje , Factores de Transcripción/genética
6.
Eur J Med Genet ; 64(4): 104188, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33667650

RESUMEN

Duane retraction syndrome is a congenital eye movement disorder characterized by a failure of abducens nerve to develop normally, resulting in restriction or absence of abduction, adduction, or both, and narrowing of the palpebral fissure and retraction of the globe on attempted adduction. There is a genetic heterogeneity in Duane retraction syndrome (DURS). DURS maps to chromosome 8q13 in some patients, and pathogenic variants in CHN1 and MAFB genes are known to lead to DURS. We report here a child and his father with Duane retraction syndrome, associated to swallowing difficulties and unilateral trapeze aplasia. A whole exome sequencing revealed a heterozygous missense variant in CHN1 gene. This gene encodes GTPase-activating protein and is involved in the assembly of neuronal locomotor circuits. A patient with a 8q deletion has previously been described with a Duane retraction syndrome associated to trapeze aplasia. We provide an additional description to support the role in cranial nerves development of the CHN1 gene.


Asunto(s)
Quimerina 1/genética , Nervios Craneales/patología , Síndrome de Retracción de Duane/genética , Fenotipo , Niño , Nervios Craneales/fisiopatología , Deglución , Síndrome de Retracción de Duane/diagnóstico por imagen , Síndrome de Retracción de Duane/patología , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje
7.
Sci Rep ; 10(1): 16225, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004823

RESUMEN

Duane retraction syndrome (DRS) is a neuromuscular dysfunction of the eyes. Although many causative genes of DRS have been identified in Europe and the United States, few reports have been published in regard to Chinese DRS. The aim of the present study was to explore the genetic defect of DRS in a Chinese family. Exome sequencing was used to identify the disease-causing gene for the two affected family members. Ophthalmic and physical examinations, as well as genetic screenings for variants in chimerin 1 (CHN1), were performed for all family members. Functional analyses of a CHN1 variant in 293T cells included a Rac-GTP activation assay, α2-chimaerin translocation assay, and co-immunoprecipitation assay. Genetic analysis revealed a NM_001822.7: c.637T > G variant in the CHN1 gene, which resulted in the substitution of a highly conserved C1 domain with valine at codon 213 (NP_001813.1: p.(Phe213Val)) (ClinVar Accession Number: SCV001335305). In-silico analysis revealed that the p.(Phe213Val) substitution affected the protein stability and connections among the amino acids of CHN1 in terms of its tertiary protein structure. Functional studies indicated that the p.(Phe213Val) substitution reduced Rac-GTP activity and enhanced membrane translocation in response to phorbol-myristoyl acetate (PMA). Together with previous studies, our present findings demonstrate that CHN1 may be an important causative gene for different ethnicities with DRS.


Asunto(s)
Pueblo Asiatico/genética , Quimerina 1/genética , Síndrome de Retracción de Duane/genética , Mutación Missense , Adolescente , Adulto , Niño , Síndrome de Retracción de Duane/patología , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Adulto Joven
9.
Kidney Int ; 94(2): 396-407, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29779709

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is a leading cause of end-stage renal disease in children and adults. Genetic factors significantly contribute to early-onset FSGS, but the etiologies of most adult cases remain unknown. Genetic studies of monogenic syndromic FSGS exhibiting extra-renal manifestations have uncovered an unexpected biological role for genes in the development of both podocytes and other cellular lineages. To help define these roles, we studied two unrelated families with FSGS associated with Duane Retraction Syndrome, characterized by impaired horizontal eye movement due to cranial nerve malformation. All four affected individuals developed FSGS and Duane Retraction Syndrome in their first to second decade of life, manifested as restricted abduction together with globe retraction and narrowed palpebral fissure on attempted adduction. Hypoplasia of the abducens nerves and hearing impairment occurred in severely affected individuals. Genetic analyses revealed that affected individuals harbor a rare heterozygous substitution (p.Leu239Pro) in MAFB, a leucine zipper transcription factor. Luciferase assays with cultured monocytes indicated that the substitution significantly reduced transactivation of the F4/80 promoter, the known MAFB recognition element. Additionally, immunohistochemistry indicated reduced MAFB expression in the podocytes of patients. Structural modeling suggested that the p.Leu239Pro substitution in the DNA-binding domain possibly interferes with the stability of the adjacent zinc finger. Lastly, podocytes in neonatal mice with p.Leu239Pro displayed impaired differentiation. Thus, MAFB mutations impair development and/or maintenance of podocytes, abducens neurons and the inner ear. The interactions between MAFB and regulatory elements in these developing organs are likely highly specific based on spatiotemporal requirements.


Asunto(s)
Síndrome de Retracción de Duane/etiología , Glomeruloesclerosis Focal y Segmentaria/genética , Fallo Renal Crónico/etiología , Factor de Transcripción MafB/genética , Adolescente , Adulto , Edad de Inicio , Sustitución de Aminoácidos , Animales , Niño , Síndrome de Retracción de Duane/patología , Femenino , Pruebas Genéticas , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Glomeruloesclerosis Focal y Segmentaria/patología , Heterocigoto , Humanos , Fallo Renal Crónico/patología , Masculino , Ratones , Mutación , Podocitos/patología , Dominios Proteicos/genética , Homología de Secuencia de Aminoácido , Adulto Joven
10.
Biochem Biophys Res Commun ; 494(3-4): 504-510, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29050935

RESUMEN

Therapeutic intervention is an important need in ameliorating the severe consequences of Rett Syndrome (RTT), a neurological disorder caused by mutations in the X-linked gene methyl-CpG-binding protein-2 (MeCP2). Following previously observed morphological defects in induced pluripotent stem cell (iPSC)-derived neurons obtained from female RTT patients, we hypothesized that transfection with the L1 cell adhesion molecule (L1) could contribute to normalizing a pathological male cell system bearing a nonsense mutation of MeCP2. We found a decreased expression of L1 in RTT iPSCs-derived neural precursor cells (RTT NPCs) and decreased neuritogenesis. Expression of wild-type MeCP2 in RTTNPCs revealed a positive correlation between the levels of MeCP2 and L1, and normalization of cell survival. Expression of L1 in RTTNPCs enhanced neuritogenesis and soma size. Knock-down of MeCP2 in wild type NPCs reduced neuritogenesis. L1 expression is regulated by the MeCP2 promoter. These results suggest that a deficiency in L1 may partially account for RTT phenotypes.


Asunto(s)
Síndrome de Retracción de Duane/metabolismo , Síndrome de Retracción de Duane/patología , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis , Proyección Neuronal , Células Cultivadas , Femenino , Humanos , Masculino , Molécula L1 de Adhesión de Célula Nerviosa/genética
11.
Hum Mol Genet ; 26(R1): R37-R44, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28459979

RESUMEN

Unraveling the genetics of the paralytic strabismus syndromes known as congenital cranial dysinnervation disorders (CCDDs) is both informing physicians and their patients and broadening our understanding of development of the ocular motor system. Genetic mutations underlying ocular CCDDs alter either motor neuron specification or motor nerve development, and highlight the importance of modulations of cell signaling, cytoskeletal transport, and microtubule dynamics for axon growth and guidance. Here we review recent advances in our understanding of two CCDDs, congenital fibrosis of the extraocular muscles (CFEOM) and Duane retraction syndrome (DRS), and discuss what they have taught us about mechanisms of axon guidance and selective vulnerability. CFEOM presents with congenital ptosis and restricted eye movements, and can be caused by heterozygous missense mutations in the kinesin motor protein KIF21A or in the ß-tubulin isotypes TUBB3 or TUBB2B. CFEOM-causing mutations in these genes alter protein function and result in axon growth and guidance defects. DRS presents with inability to abduct one or both eyes. It can be caused by decreased function of several transcription factors critical for abducens motor neuron identity, including MAFB, or by heterozygous missense mutations in CHN1, which encodes α2-chimaerin, a Rac-GAP GTPase that affects cytoskeletal dynamics. Examination of the orbital innervation in mice lacking Mafb has established that the stereotypical misinnervation of the lateral rectus by fibers of the oculomotor nerve in DRS is secondary to absence of the abducens nerve. Studies of a CHN1 mouse model have begun to elucidate mechanisms of selective vulnerability in the nervous system.


Asunto(s)
Axones/fisiología , Síndrome de Retracción de Duane/genética , Fibrosis/genética , Oftalmoplejía/genética , Animales , Axones/metabolismo , Anomalías Congénitas , Síndrome de Retracción de Duane/metabolismo , Síndrome de Retracción de Duane/patología , Enfermedades Hereditarias del Ojo/genética , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Ratones , Mutación , Mutación Missense , Trastornos de la Motilidad Ocular/genética , Músculos Oculomotores/anomalías , Músculos Oculomotores/patología , Oftalmoplejía/metabolismo , Oftalmoplejía/patología , Cráneo/fisiopatología , Tubulina (Proteína)/genética
12.
Am J Hum Genet ; 98(6): 1220-1227, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27181683

RESUMEN

Duane retraction syndrome (DRS) is a congenital eye-movement disorder defined by limited outward gaze and retraction of the eye on attempted inward gaze. Here, we report on three heterozygous loss-of-function MAFB mutations causing DRS and a dominant-negative MAFB mutation causing DRS and deafness. Using genotype-phenotype correlations in humans and Mafb-knockout mice, we propose a threshold model for variable loss of MAFB function. Postmortem studies of DRS have reported abducens nerve hypoplasia and aberrant innervation of the lateral rectus muscle by the oculomotor nerve. Our studies in mice now confirm this human DRS pathology. Moreover, we demonstrate that selectively disrupting abducens nerve development is sufficient to cause secondary innervation of the lateral rectus muscle by aberrant oculomotor nerve branches, which form at developmental decision regions close to target extraocular muscles. Thus, we present evidence that the primary cause of DRS is failure of the abducens nerve to fully innervate the lateral rectus muscle in early development.


Asunto(s)
Síndrome de Retracción de Duane/etiología , Pérdida Auditiva/etiología , Enfermedades del Laberinto/etiología , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/fisiología , Músculos Oculomotores/patología , Animales , Síndrome de Retracción de Duane/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Pérdida Auditiva/patología , Humanos , Enfermedades del Laberinto/patología , Masculino , Ratones , Ratones Noqueados , Músculos Oculomotores/inervación , Linaje
14.
Eur J Med Genet ; 59(2): 80-5, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26791099

RESUMEN

Okihiro syndrome, Duane-radial ray syndrome or acro-reno-ocular syndrome (OMIM #607323) are alternative denominations describing an extremely variable condition, characterized by several radial defects of the upper limbs associated with Duane anomaly. It is a rare autosomal dominant disorder determined by variants in the SALL4 gene which encodes a transcription factor with eight zinc finger motifs. Here we report a novel heterozygous frameshift variant, c.410dupG, present in a Brazilian family. The five affected individuals exhibit a broad spectrum of phenotypes, ranging from the severe one presented by the index case (grossly shortened and deformed forearm, markedly hypoplastic and appendicular thumb, malformed right foot and ear malformation), to the less conspicuous condition presented by his near relatives (usually only triphalangeal or hypoplastic thumbs, sometimes associated with ulnar deviation); Duane's anomaly, however, was not observed in any of the affected family members. The c.410dupG variant is predicted to result in the translation of a truncated protein with 180 amino acid residues, lacking seven of the eight zinc finger motifs, with the same size of the predicted products of the already reported c.496dupC variant, described in two unrelated cases. However, the phenotypes observed in the three families (the one here reported and other two with c.496dupC variant) are very different. The analysis of cases so far published does not permit to establish a clear or direct genotype-phenotype correlation, but the three more severe foot malformation cases are due to variants predicted to encode truncated proteins lacking seven ZFMs. This might indicate a possible correlation between foot malformation and reduced size of the protein, suggesting that the nonsense-mediated-decay mechanism might not be so effective as to eliminate all SALL4 variants harboring premature termination codons.


Asunto(s)
Síndrome de Retracción de Duane/genética , Mutación del Sistema de Lectura , Factores de Transcripción/genética , Brasil , Análisis Mutacional de ADN , Síndrome de Retracción de Duane/patología , Femenino , Humanos , Masculino , Linaje , Penetrancia
16.
Clin Radiol ; 69(5): e191-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24631280

RESUMEN

AIM: To investigate the innervation pattern of extra-ocular muscles in patients with clinically diagnosed Duane's ocular retraction syndrome (DRS) using magnetic resonance imaging (MRI). MATERIALS AND METHODS: The study population consisted of 11 patients. Six patients had type I DRS (eight eyes), four patients had type II DRS (five eyes) and one patient had inverse DRS. Images were acquired using a Siemens 3 T MRI system. The type of DRS, corresponding innervation findings, and condition of the affected muscles were evaluated by two experienced neuroradiologists in consensus. RESULTS: All patients with clinically diagnosed DRS type I showed absence of the abducens nerve (CN6), hypoplasia of the superior oblique muscle (SOM), and aberrant innervation of lateral rectus muscle (LRM) by an extra branch of oculomotor nerve (CN3). All patients with type II DRS show dual-innervation of the LRM (by CN6 and an aberrant CN3 branch) and hypoplasia of SOM. The single patient with inverse DRS showed hypoplasia of CN3, the medial rectus muscle (MRM), the inferior rectus muscle (IRM), and the inferior oblique muscle (IOM). CONCLUSION: Each type of DRS has characteristic MRI appearances. Therefore, MRI is a useful diagnostic tool for the confirmation and classification of suspected cases of DRS.


Asunto(s)
Nervio Abducens/patología , Síndrome de Retracción de Duane/patología , Imagen por Resonancia Magnética , Músculos Oculomotores/patología , Nervio Oculomotor/patología , Nervio Abducens/anomalías , Adulto , Niño , Preescolar , China/epidemiología , Diagnóstico Diferencial , Síndrome de Retracción de Duane/genética , Síndrome de Retracción de Duane/fisiopatología , Femenino , Humanos , Masculino , Músculos Oculomotores/inervación , Nervio Oculomotor/fisiopatología
17.
J Child Neurol ; 29(11): NP151-3, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24453144

RESUMEN

Duane retraction syndrome consists of abduction deficit and palpebral fissure narrowing, upshoots, or downshoots on adduction. Infants with abduction deficit should be considered to have Duane retraction syndrome until disproven, because congenital abducens nerve palsy is extremely rare. The abducens nerve on the affected side is absent in type 1 Duane retraction syndrome and in some type 3 patients. The authors present a 7-month-old girl who showed limitation of abduction simulating Duane retraction syndrome. High-resolution magnetic resonance imaging (MRI) revealed atrophic lateral rectus and present abducens nerve. This report is important because this case showed that congenital abducens nerve palsy exists, although it is extremely rare, and high-resolution MRI could be pivotal for the differentiation of Duane retraction syndrome and congenital abducens nerve palsy in infancy.


Asunto(s)
Enfermedades del Nervio Abducens/diagnóstico , Enfermedades del Nervio Abducens/patología , Nervio Abducens/patología , Síndrome de Retracción de Duane/diagnóstico , Síndrome de Retracción de Duane/patología , Nervio Abducens/fisiopatología , Enfermedades del Nervio Abducens/fisiopatología , Diagnóstico Diferencial , Síndrome de Retracción de Duane/fisiopatología , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética
20.
J Neurol ; 259(4): 761-3, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21947222

RESUMEN

Cell outgrowth and migration in the developing nervous system result from guidance cues, whose molecular bases and clinical correlates are only partly known. We describe a patient with brain stem malformation, paroxysmal left sided lacrimation when eating ("crocodile tears") and mirror movements in addition to Wildervanck's cervico-oculo-acusticus (COA) syndrome, which encompasses Klippel-Feil anomaly, congenital hearing loss and Duane's syndrome. The unique symptom constellation has not been reported in that combination before and can be discussed in the context of congenital disordered axonal migration based on dysfunction of signalling pathways. However, mutations in some recently discovered genes, associated with single findings also present in our patient, were not found. Therefore, we suppose that the disturbance of an as yet unknown regulatory factor may explain the congenital malformation syndrome of our patient. In general, only a few human disorders have yet been found to result from defects in axon guidance. Nevertheless, disorders of axon guidance can certainly be regarded as a new category of neurodevelopmental disorders.


Asunto(s)
Anomalías Múltiples/patología , Axones/patología , Síndrome de Retracción de Duane/patología , Pérdida Auditiva/congénito , Síndrome de Klippel-Feil/patología , Trastornos del Movimiento/patología , Anomalías Múltiples/fisiopatología , Adulto , Movimiento Celular , Síndrome de Retracción de Duane/fisiopatología , Pérdida Auditiva/patología , Pérdida Auditiva/fisiopatología , Cardiopatías Congénitas , Defectos del Tabique Interatrial , Humanos , Síndrome de Klippel-Feil/fisiopatología , Deformidades Congénitas de las Extremidades Inferiores , Masculino , Trastornos del Movimiento/fisiopatología , Neurogénesis , Neuronas/patología , Deformidades Congénitas de las Extremidades Superiores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...